Simple PCB drilling jig

Drilling jig in action

Recently I've been making a lot of printed circuit boards. One of the common problems I run into is aligning holes correctly when hand drilling. This is especially troublesome on boards with large arrays of pins, such as my hexapod controller (I promise I'll write that up soon!). A misaligned hole will prevent IC sockets from fitting correctly or cause pin headers to sit at crazy angles. This is really obvious on the first version of my hexapod controller board as shown below.

Wonky pin headers

In order to work around this for the second version of the hexapod board I used my CNC machine to drill the holes. This is great for relatively large jobs, but the setup time makes it less attractive for small one off boards.

Since I was scheduled to have an induction on Nottingham Hackspace's new laser cutter and given the option of cutting my own project during the induction, I came up with a simple mechanical solution to drilling holes at the 0.1 inch spacing required for most IC sockets and pin headers.

Simple PCB Drilling Jig

The concept is very simple: a zigzag line is cut through a piece of plywood with a "wavelength" of 0.1 inches. One side of the cut is clamped to the work surface of a pillar dril,l and the board to be drilled is taped to the other side. The serrated edges can be moved around, and when pushed back together they naturally align to multiples of 0.1 inch. I went with a sawtooth style wave in the end so pressure can be applied in towards the flat edge of the sawtooth without the piece slipping.

Drilling jig in action

The photo above shows masking tape, but double sided tape would have worked better if I'd had any with me when taking the photos.

In order to make grid style layouts I added a second layer of serrations at 90 degrees to the first. I've not had chance to test this as the work area of the pillar drill I've been using does not have space. The intended usage is that both of the outer stages would be clamped in place and the inner piece manipulated by hand to drill columns of holes. Once a column is complete the middle stage would be un-clamped, adjusted then re-clamped. This is repeated for as many columns as necessary.

I've used the jig with a single stage on a few boards now, and it works well so long as the initial hole is well aligned. An easy way to ensure this is to align the drill bit with the smallest hole in the row and then clamp the jig in place.

To ensure that the board is aligned correctly in the jig, I usually find the longest run of holes on the board and put a ruler against the edge. Drawing a pencil line along the ruler provides alignment marks on the board that can be matched up with the etched lines on the jig.

In the current version, the inner section of the jig is a sacrificial piece which will eventually become full of holes. I toyed with the idea of making the inner section in an L shape into which the board would fit, but this would rely on the edges of the board being cut exactly parallel with the grid so it's less useful in practice. Hopefully the sacrificial part of the jig will last long enough, and it's cheap enough to just make another when it wears out.

FTDI breakout breakout

Earlier today I used the jig to make a very simple breakout board to match the pinout from an FTDI board to an Arduino style six pin header. The 6 pin header and 32 pin (minus 4 due to the weird layout on the FTDI board) IC socket I used fitted perfectly first time.

Perfect fit

I've made the CAD drawing for the jig available to download. Hopefully it will be useful to someone.